Molecules and mechanisms of dendrite development in Drosophila.
نویسندگان
چکیده
Neurons are one of the most morphologically diverse cell types, in large part owing to their intricate dendrite branching patterns. Dendrites are structures that are specialized to receive and process inputs in neurons, thus their specific morphologies reflect neural connectivity and influence information flow through circuits. Recent studies in Drosophila on the molecular basis of dendrite diversity, dendritic guidance, the cell biology of dendritic branch patterning and territory formation have identified numerous intrinsic and extrinsic cues that shape diverse features of dendrites. As we discuss in this review, many of the mechanisms that are being elucidated show conservation in diverse systems.
منابع مشابه
Dscam1 is required for normal dendrite growth and branching but not for dendritic spacing in Drosophila motoneurons.
Down syndrome cell adhesion molecule, Dscam, serves diverse neurodevelopmental functions, including axon guidance and synaptic adhesion, as well as self-recognition and self-avoidance, depending on the neuron type, brain region, or species under investigation. In Drosophila, the extensive molecular diversity that results from alternative splicing of Dscam1 into >38,000 isoforms provides neurons...
متن کاملTurtle Functions Downstream of Cut in Differentially Regulating Class Specific Dendrite Morphogenesis in Drosophila
BACKGROUND Dendritic morphology largely determines patterns of synaptic connectivity and electrochemical properties of a neuron. Neurons display a myriad diversity of dendritic geometries which serve as a basis for functional classification. Several types of molecules have recently been identified which regulate dendrite morphology by acting at the levels of transcriptional regulation, direct i...
متن کاملDendrite branching and self-avoidance are controlled by Turtle, a conserved IgSF protein in Drosophila.
The dendritic trees of neurons result from specific patterns of growth and branching, and dendrite branches of the same neuron avoid one another to spread over a particular receptive field. Recognition molecules on the surfaces of dendrites influence these patterning and avoidance processes by promoting attractive, repulsive or adhesive responses to specific cues. The Drosophila transmembrane p...
متن کاملAxon and dendrite pruning in Drosophila.
Pruning, a process by which neurons selectively remove exuberant or unnecessary processes without causing cell death, is crucial for the establishment of mature neural circuits during animal development. Yet relatively little is known about molecular and cellular mechanisms that govern neuronal pruning. Holometabolous insects, such as Drosophila, undergo complete metamorphosis and their larval ...
متن کاملGenes regulating dendritic outgrowth, branching, and routing in Drosophila.
Signaling between neurons requires highly specialized subcellular structures, including dendrites and axons. Dendrites exhibit diverse morphologies yet little is known about the mechanisms controlling dendrite formation in vivo. We have developed methods to visualize the stereotyped dendritic morphogenesis in living Drosophila embryos. Dendrite development is altered in prospero mutants and in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 136 7 شماره
صفحات -
تاریخ انتشار 2009